

PerkinElmer

TGA-IR-GCMS 三联机操作说明书

编写人:满卓

编写日期: 2016.4.8

版 本: v2.0

目 录

1.	仪器开机	3
2.	TL9000 控制器	3
3.	热重的联机方法设置	3
3.1	打开循环冷凝水	3
3.2	编辑热重运行方法:	3
4.	IR Timebase 联机方法设置	9
4.1	扫描背景	9
4.2	设置运行方法	9
4.3	运行样品	9
5.	GCMS TurboMass 软件联机方法设置	.10
5.1	在线模式的设置:	10
5.2	离线模式的设置:	11
5.3	等待运行	11
6.	GSV 阀的工作模式概述	.12
6.1	GSV 阀的简介	12
6.2	在线模式说明	12
6.3	离线模式说明	13
7.	附录: GCMS TurboMass 软件操作流程详述	.14
7.1	仪器开机	14
7.2	分析前的准备工作:抽真空、检查系统气密性、质量轴校准	14
7.3	仪器校准	16
7.4	仪器方法的建立	18
7.5	调谐方法的建立	38

1. 仪器开机

打开 TL9000 控制器,热重,红外,GCMS 电源。

2. TL9000 控制器

2.1 打开 TL9000 控制器后,将所有温度设置至指定温度。温度可调范围: 50℃ -350℃,推荐使用温度 260-300℃。抽气泵的流速一般设定为 60-70mL/min。如图 1 所示。

备注:图中几个温度分别为:

CELL: IR 气体池温度;

T.Line:TGA 至 IR 之间的传输线温度;

MS TL: IR 至 GCMS 之间的传输线温度;

GSV Heater: GSV 阀的温度:

图 1

3. 热重的联机方法设置

3.1 打开循环冷凝水

Pyris 软件打开后,首先点击循环冷凝水图标,保证冷凝水启动。

3.2 编辑热重运行方法:

3.2.1 点击 ,打开热重运行方法的编辑界面。在"Sample Info"界面里,点击 Browse...输入样品名,按照"xxx.stad"格式命名。如图 2 所示。

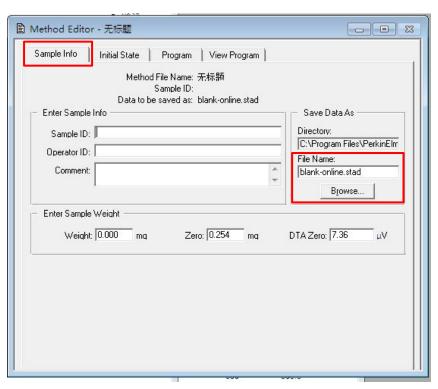


图 2

先准备空坩埚去皮重,样品一般加入 5-20mg,快速加热到反应初始加热温度平衡。

3.2.2 在 "Initial State" 界面里,鼠标点击右键,提示对话框中,选择"Gas Switch Action",在弹出的对话框中,可以选择反应气类型和设定流量。例如,选择氮气,流量选为 20mL/min,点击"OK"。如图 3 所示。

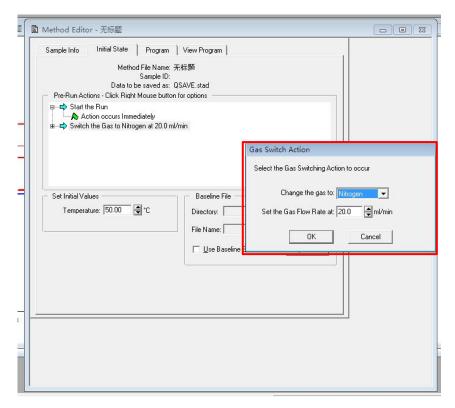


图 3

- **3.2.3** 在 Program 对话框里,设置好样品的升温梯度后,再加入 IR 和 GCMS 的触发信号。软件设定为 IR 的触发信号为 Channel 1, GCMS 的触发信号为 Channel 2。具体操作步骤如下:
- **3.2.3.1** 选中温度台阶,点击"Add Action",选择"Trigger an External Event",点击"OK"。如图 4 所示。

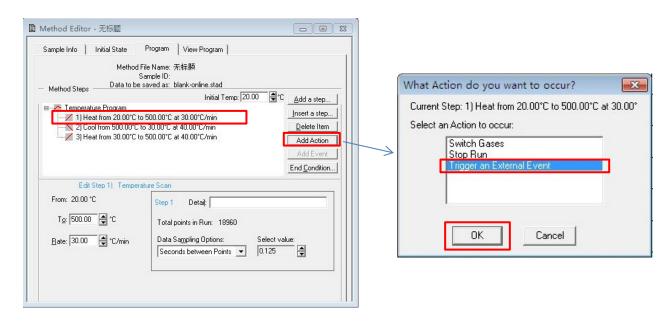


图 4

1.2.3.2 在弹出的提示中,选择"Switch External Channel 1 to On"。点击"OK"。 如图 5 所示。

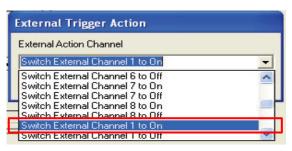


图 5

3.2.3.3 提示采用何种方式触发,一般选择为"A Specified Time is reached"或者"A Specified Temperature is reached",表示触发信号是按照设定的时间点或温度点开始。对于 IR,通常采用和 TGA 同步,所以也可以选择"Action occurs Immediately",表示 TGA 一运行,IR 即开始采集信号。

在说明中,以"A Specified Temperature is reached"为例。如图 6 所示。

bove Action to occur:
ıry
d reached
el
nc

3.2.3.4 提示输入特定的温度值,点击"OK"。表示 TGA 达到此温度点时,IR 开始数据采集。如图 7 所示。

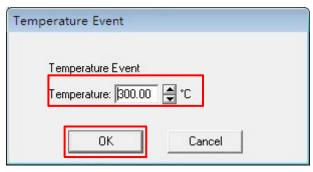


图 7

那么,在TGA的运行方法里就会出现已设定好的触发命令。如图8所示。

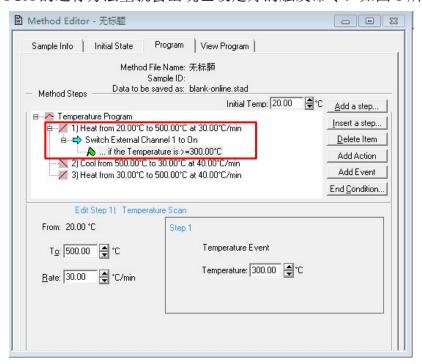


图 8

3.2.3.5 同样的操作步骤,再加入 IR 的触发信号关闭的动作。即加入触发事件,选择 "Switch External Channel 1 to Off"。再设定关闭触发信号的温度点,高于之前设定的 300° C即可,例如设定 350 或 500° C。如图 9 所示。

备注:此命令仅表示关闭触发信号,并不影响 IR 或 GCMS 数据采集。

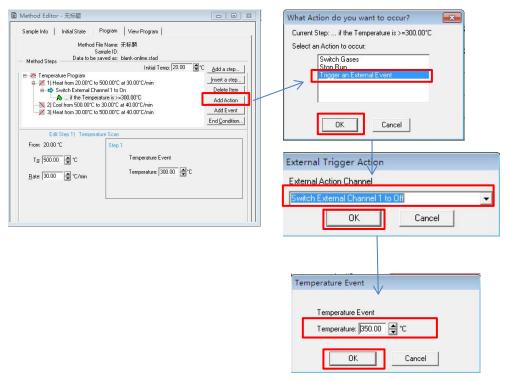
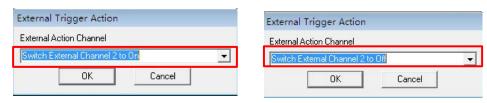
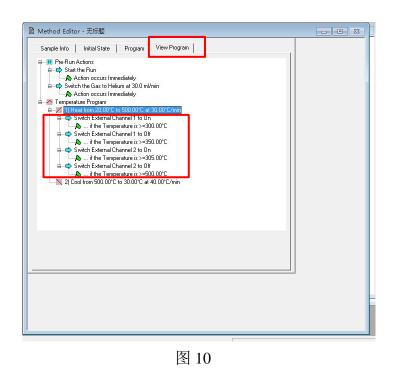




图 9

3.2.3.6 如同 IR 的触发命令设置相同,将通道选为"Channel 2",即可设置 GCMS 的触发命令。在"View Program"界面里,可以完整的显示全部运行方法。如图 10 所示。

3.2.3.7 待 IR 和 GCMS 的仪器方法设定好后,即可点击 ,开始运行样品。

4. IR Timebase 联机方法设置

4.1 扫描背景

点击 , 在弹出的对话框点击"确定"。开始扫描背景。如图 11 所示。

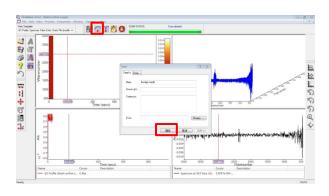


图 11

4.2 设置运行方法

在 "Instrument"下拉菜单中,选择 "Setup Data Collection ..."。在弹出的对话框中,运行时间 "Run Time"一般设定为和 TGA 运行时间相同,等待外部触发信号 "Wait for External Trigger"需打钩。在样品名称"Name"里输入样品名,最后,点击"Start Run"即可。如图 12 所示。

备注: 如果想手动运行 IR 同步采集,不在 TGA 软件中设置触发信号的话,则 "Wait for External Trigger"不需要打钩。

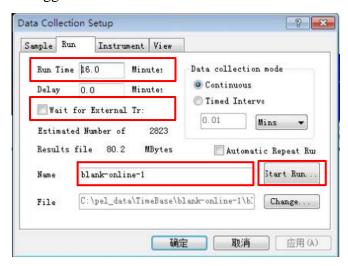


图 12

4.3 运行样品

4.3.1 然后在弹出的对话框中,点击 "Start"。图 13 所示。

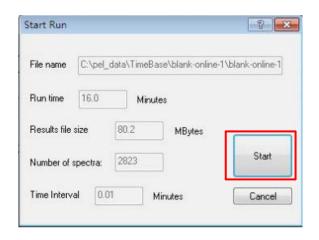


图 13

4.3.2 这时 IR 的状态会显示为"Waiting for trigger",等待外部触发的状态。图 14 所示。当 TGA 开始运行后,根据触发信号设定参数,IR 自动开始运行。

图 14

备注: 做样品时,Timebase 软件和红外单独使用软件 Spectrum,一定不能同时打开,否则无法运行样品。没有做样时,可以同时打开两个软件。

5. GCMS TurboMass 软件联机方法设置

GCMS 在联用时,需要在 GC 运行方法中输入时间事件。具体如下:

5.1 在线模式的设置:

5.1.1 点击 GC 运行方法,在对话框"Instrument timed events"里,选择: V3, 状态: ON,时间: 0.1min。如图 15 所示。

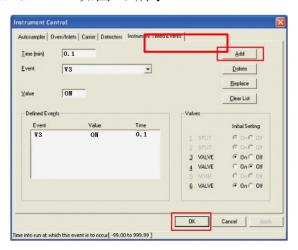


图 15

5.2 离线模式的设置:

5.2.1 点击 GC 运行方法,在对话框"Instrument timed events"里,选择: V4, 状态: ON,时间: 0.1min。如图 16 所示。

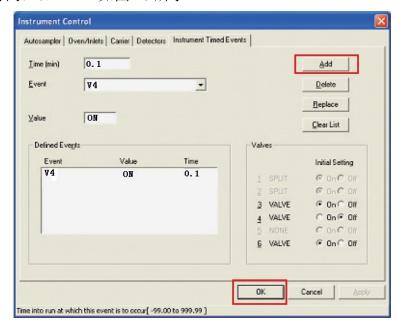


图 16

5.3 等待运行

发送仪器方法后, GCMS 进入待机状态, 等待外部触发信号。

备注: 联用时,如果不在 TGA 方法中设定 GCMS 触发信号,而在 TGA 任意温度点使 GCMS 运行的话,也可以直接点 GCMS 的气相触摸屏中的"开始"按钮,则 GCMS 也会实现同步监测,Turbomass 软件中的设置同上。

6. GSV 阀的工作模式概述

6.1 GSV 阀的简介

- **6.1.1** GSV 阀是 TL9000 联用控制系统中的重要组成部分。由两个阀组成,图 17 所示,上面的是八通阀,下面的是四通阀;在以下的阀图中,A 表示此阀关闭状态,B 表示此阀打开状态;
- **6.1.2** 分为两种模式,一种是在线模式,即 TG 的样品气实时通入质谱里,全程监测;此时,质谱采集到的样品是混气的模式,即色谱图上的每个保留时间都是对应的混合组份:
- **6.1.3** 另一种是离线模式,即 TG 的样品气仅收集约 100uL 至 Loop 定量环中,再由载气将 loop 环中的样品气带入到色谱柱分离,经过质谱检测得到的具体化学组份;
- 6.1.4 因此, TL9000 阀具有两种切换模式, 分别是在线和离线模式;

6.2 在线模式说明

在线模式时,八通阀和四通阀同时打开(图 17 所示),即样品气从八通阀的 1#至8#,经过空毛细柱进入到四通阀的 4#,再至四通阀的 1#进入到质谱,实时分析;如图 17 所示。

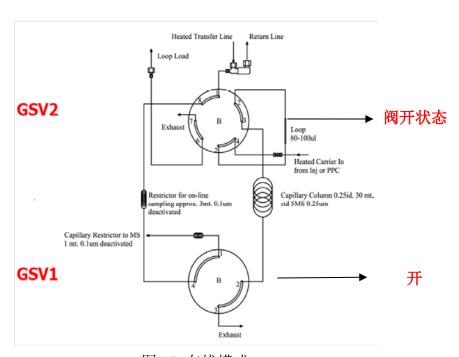


图 17 在线模式

6.3 离线模式说明

离线模式时,先开 Loop 按钮(图 18 左图上),表示 Loop 环正在收集样品气,即样品气从八通阀的 1#至 2#,再至 5#,从 6#排出;充满 Loop 环后,关闭 Loop 环,打开八通阀(图 18 右图上),则载气 He 从八通阀的 4#经过 5#,带着 Loop 环里的样品,经过 2#,3#进入到色谱柱分离,再进入到四通阀(图 18 右图下),从四通阀的 2#,经 1#进入到质谱检测;如图 18 所示。

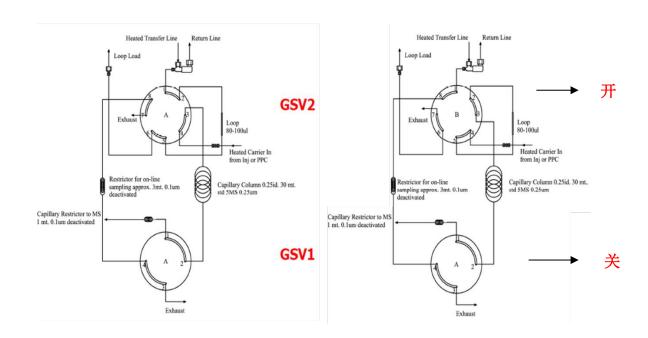
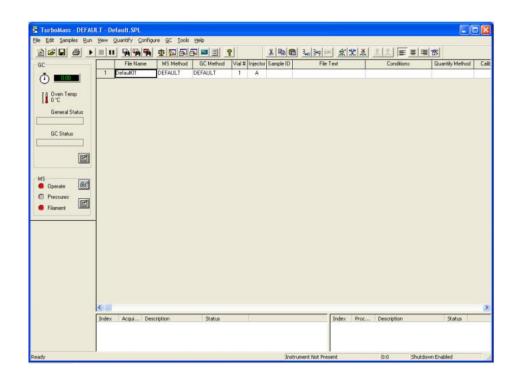


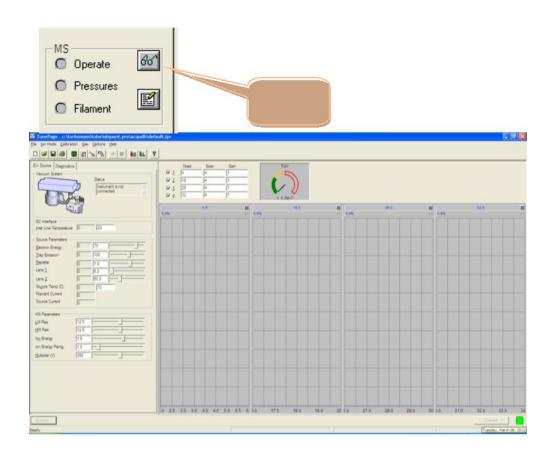
图 18 离线模式

7. 附录: GCMS TurboMass 软件操作流程详述

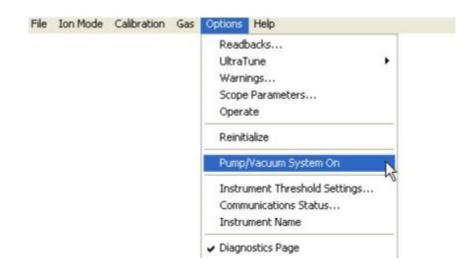

7.1 仪器开机

这部分将讲述如何在系统全部关闭的情况下启动 SQ8 MS。

7.1.1 双击Windows操作界面上的 TurboMass软件 的图标,软件的登录界面就会出现。



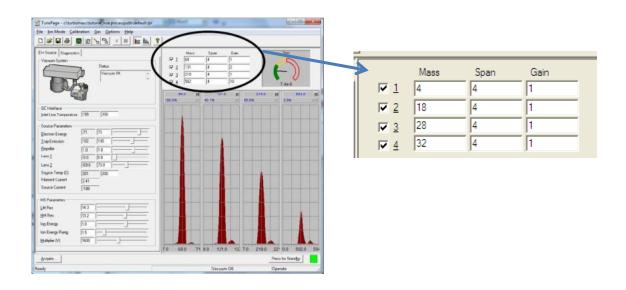
7.1.2 点击 OK, 就会显示 TurboMass 6.0 软件的初始界面。


7.2 分析前的准备工作: 抽真空、检查系统气密性、质量轴校准 7.2.1抽真空

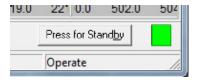
单击 M 图标,显示质谱检测器的调谐(Tune)界面。

7.2.2 启动真空泵

在 Options 菜单中点击 Pump/Vacuum System On(抽真空)。真空泵自动工作, 直到真空度读数达到 2- 3.0 x10-5。


7.2.3 检查系统气密性

在如下界面修改调谐峰列表


依次将四个调谐峰的质量数 (Mass) 设为 4, 18, 28 和 32。不同的调谐峰代表不同的物质 4 (氦), 18 (水), 28 (氦) 和 32 (氧)。

所有四个调谐峰的监测范围(Span)均设为 4。

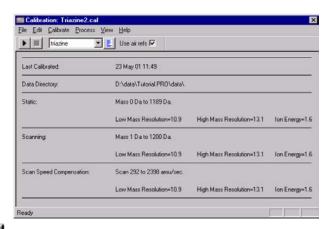
所有四个调谐峰的增益(Gain)均设为1。

7.2.4 单击 Press for Operate 按钮。出现如下状态:

CAUTION: 千万不要在真空度大于 1 × 10⁻⁴ Torr 时单击 Press for Operate 按钮 打开灯丝,否则将烧毁灯丝。

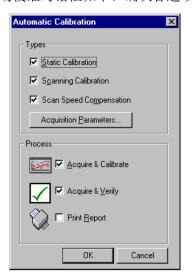
7.2.5 观察调谐峰,水峰(18)远远低于氦峰(4)。氮峰(28)小于水峰(18)。 氧峰(32)小于氮峰(28)的25%。

7.3 仪器校准

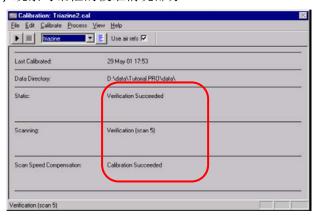

- 7.3.1 一般质量校准
- 7.3.1.1 打开校准气,并单击窗口右下角的 Press for Operate 按键。

TunePage - c:\turbomass\ofn test.pro\acc
File Ion Mode Calibration Gas Options Help

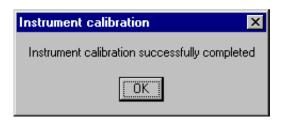
Calibrate Instrument...


出现如下界面

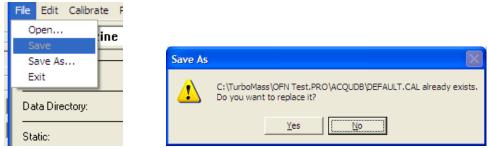
7.3.1.3 点击



,显示自动校准对话框如下。确认各选项勾选情况与上图一致。



7.3.1.4 点击 OK 开始质谱校准。


TurboMass 校准时,,观察对话框的校准情况部分。

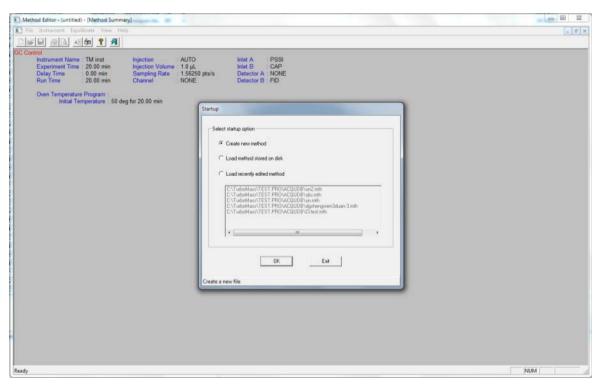
7.3.1.5 校准完成后,显示如下窗口,单击 OK

7.3.1.6 保存校准文件,点击 Yes 覆盖原有校准文件。

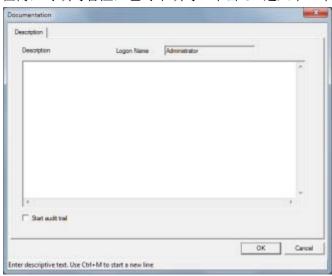
仪器会自动调用最新保存的校准文件,无论该文件保存在哪个路径,因此只需覆盖原有文件 即可。

7.3.1.7 单击 关闭参比气,单击窗口右下角的 Press for Standby 按键关闭灯丝。

备注:如果仪器待机较长时间,则需要调谐仪器,具体操作请参照《GCMS培训教程》。

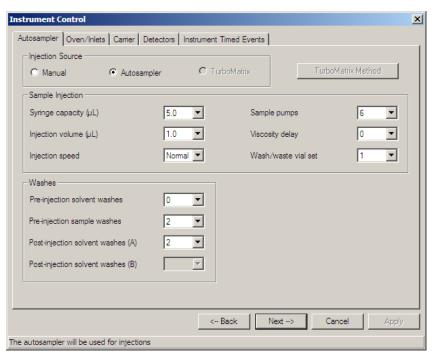

7.4 仪器方法的建立

- 7.4.1 GC 方法的建立
- 7.4.1.1 由样品列表进入 GC 方法编辑页面

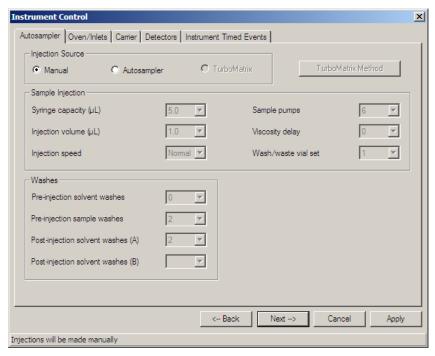

在仪器主页面的样品列表中,右键单击 GC Method 列内的方法名,在弹出的菜单中选择 Open,如上右图所示。

7.4.1.2 出现 如下页面。

- 7.4.1.3 选择 Create new method。单击 OK 进入方法编辑器窗口。
- 7.4.1.4 该窗口空白栏内,可填写备注,也可不填写。单击 OK 进入下一个页面。


该窗口空白栏内,可填写对于气相色谱分析条件的备注,也可不填写。单击 OK 进入下一个页面。

7.4.1.5 在 Instrument Control 菜单内出现 GC 的参数设置。


气相色谱(GC)参数包括:自动进样器,柱温箱/进样口,载气,检测器,仪器时间事件。与 GC 分析方法有关的参数均在此页面设定。

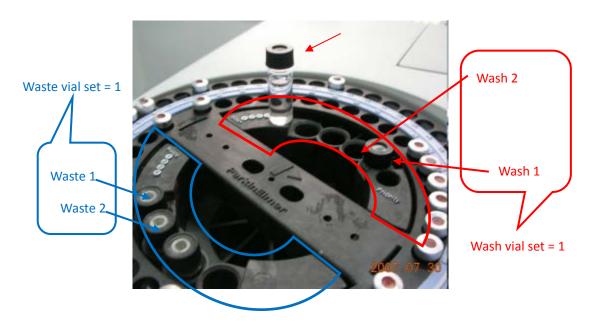
Autosampler 自动进样器

Injection source 进样方式

系统默认为 Autosampler,当使用手动进样或连接顶空进样时,可选择 Manual 项,如下图。此时,页面中下部所有选项变为不可更改项。

Sample injection 样品注射栏

Syringe capacity: 注射器体积。在右侧栏中可选三种注射器体积,分别为 0.5、5、50 uL,对应自动进样器上的注射针体积。


Injection volume: 进样体积。

Injection speed: 进样速度。分别对应 Normal 、Slow、Fast 三项。对于一般样品,通常使用 Normal 项,粘度较大样品可选择 Slow 项。

Sample pumps: 进样前抽取样品次数,该选项用来在进样前通过抽动注射器针杆来赶走进样针中的气泡。默认次数为 6 次。

Viscosity delay: 粘度延迟。样品粘度较大时使用。

Wash / waste vial set: 洗针瓶/废液瓶设置。该选项中有 1、2 两个选项,选项 1 对应自动进样盘中的 1、2 号瓶,选项 2 对应自动进样盘中 3、4 号瓶。

Washes 洗针栏

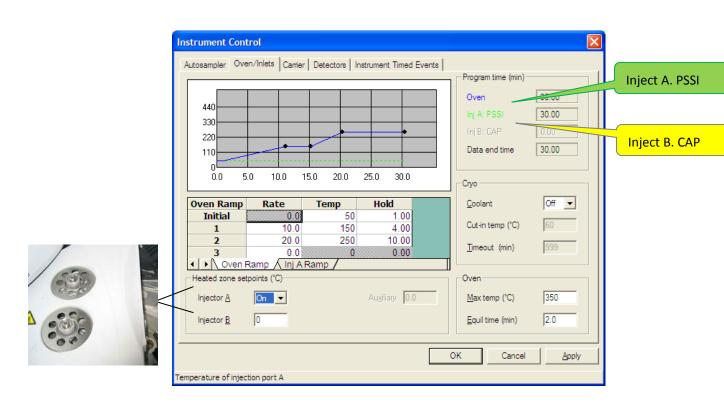
Pre-injection solvent washes: 进样前用溶剂冲洗次数。 Pre-injection sample washes: 进样前用样品润洗次数。

Post-injection solvent washes (A) : 进样后用溶剂冲洗次数。如果使用 Totalchrom 软件控制 HP5890A,HP5890 Series II 或 HP6890 仪器,可以选择两种溶剂进行进样后冲洗,此时 Post-injection solvent washes (B)也会亮起,允许设定冲洗次数。

设置完成,点 Oven / inlets 进入柱温箱 / 进样口设置。

Oven/Inlets: 柱温箱程序温度/进样口程序温度控制

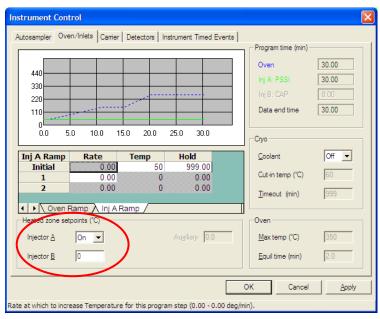
升温图表


Oven Ramp: 柱温箱程序温度

Rate: 程序升温速率

Temp: 温度

Hold: 温度保持时间 Initial: 温度/时间初始值


如果不使用程序升温,只需将 Rate1 设为 0,设置相应的 Initial Temp 和 Initial Hold 即可在表格中设置的升温程序可以在上方的图中直观显示 (如蓝线所示),每一个黑点代表表格中的一个时间温度点,在图中可以直接拖拉每个黑点来更改升温程序。

Heated zone setpoints: 加热区温度设置 (即进样口温度设置)

上图中 Inject B 为 CAP 进样口,Inject A 为 PSSI 进样口,如图右侧所示。

对于 CAP 进样口,可直接设定温度,如上图 Inject B 为 CAP 进样口,因此可在 Inject B 右侧空白处填入设定温度。如果不使用该进样口,温度则设置为零,仪器不再控制该进样口温度。

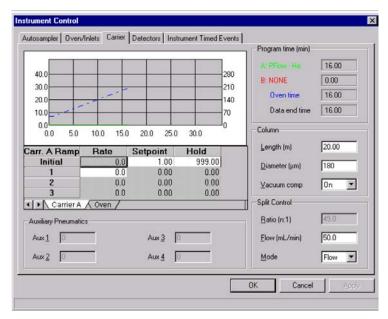
对于进样口为 PSS 程序控制进样口,此处只能选择温度程序的开/关(on/off),当选择 on 时,可在 Inj A Ramp 处设置温度程序,设置方法和柱温箱程序升温一样。若不使用该进样口,则应选择 off,关闭该进样口的加热程序。

Program time (min) : 与程序设置有关的时间显示。

Oven 柱温箱一个升温程序结束所需时间

Data end time 数据收集结束时间,该时间与柱温箱对应时间相同

Cryo: 使柱温箱降温至室温以下所需的附件设置信息。冷却剂包括液态氮与干冰。如果没有该配件,则选择 off。



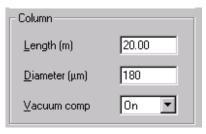
Oven:

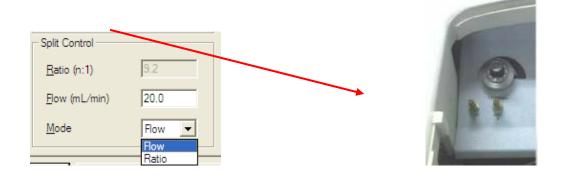
Max temp: 柱温箱保护温度,由柱温箱内的色谱柱最高温度决定,设定值应该低于色谱柱允许使用温度 10-20 度.

Equil time: 柱温箱温度平衡时间, 0.5-2 分钟即可.

Carrier: 载气设置

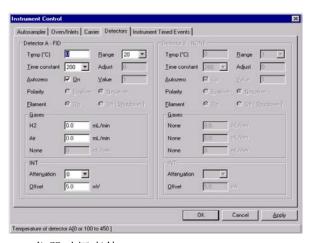
Carr. A Ramp: 前进样口载气变化程序表。该软件可以控制载气进行程序性变化,在不同的时间变化为不同的载气流速。如果希望保持载气在整个分析过程中不变,则在 Initial 行 Hold 列内填写 999,在 initial 行 setpoint 列写入载气的流速数值。


Program time (min) : 该分析方法所需时间。

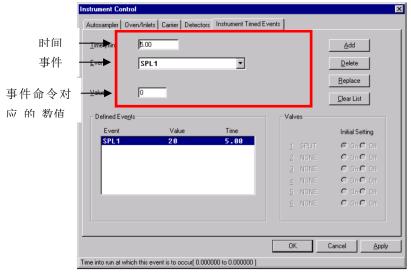

左侧部分是两个进样口内载气的类型,以及柱温箱和数据收集行,右侧部分是每一行对应时间,通常这些时间相同。

Column: 使用 PSS/CAP 进样口,还需要输入毛细柱的规格

Length: 柱长 (m); Diameter: 柱直径 (um); Vacuum comp: 柱子出口是否接真空系统,如果连接质谱,则此处选择 On。


Split Control: 分流控制

Mode: 分流控制模式,包括 flow---控制分流流量和 Ratio---控制分流比来实现分流控制。如果仪器有两个进样口,要分别设定两个进样口的载气,如果进样口上没接色谱柱,一定要将载气流量设为零,而接了色谱柱的进样口,一定要设置相应的流量,否则可能损坏色谱柱.

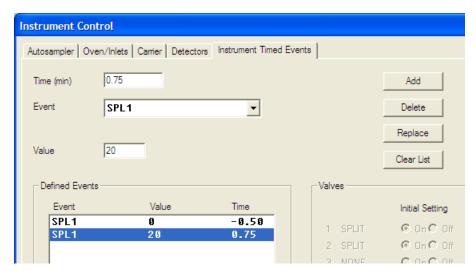

Detectors: 检测器设置

如果您的 GC 上没有安装检测器则进入下一步。下图显示的是安装有 FID 检测器的气相色谱的检测器参数设置窗口。如果您的系统上没有安装检测器或并不应用该检测器,请将 Gases (H2 和 Air),Temp 等选项均设置为 0。

Instrument Timed Events: 仪器时间事件

仪器运行时间控制表,可以设定相关的控制参数。如进样阀的控制,信号衰减的改变,分流、不分流进样,脉冲进样等。

Event 行内容包括:


ATT1: 检测器 A 的信号衰减 ATT2: 检测器 B 的信号衰减

V1: 阀 1 V2: 阀 2

SPL1: 前进样口的分流出口流量设定 SPL2: 后进样口的分流出口流量设定

CAR1: 前进样口载气的设定 CAR2: 后进样口载气的设定

RNG1: 检测器 A 的信号范围设定

上述 2 行命令,即可实现不分流进样,具体解读为:进样前 0.5 分钟,前进样口分流出口流量为 0,即关闭分流出口;进样后 0.75 分钟,前进样口的分流出口流量为 20 ml/min。

Add 为增加在红框区域内设定的命令;

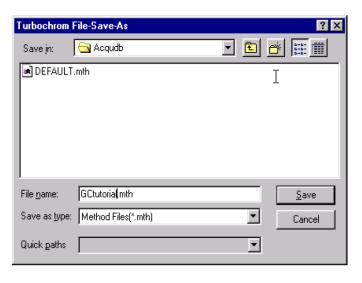
Delete 为删除 Defined Events 中选定的命令行;

Replace 为用红框区域内设定的命令代替 Defined Events 中选定的命令行;


Clear List 为清空 Defined Events 中的命令行。

Valves:关于阀的设定,如果仪器中配有阀的时候可以在这里选择阀的状态 ON 或者 OFF。

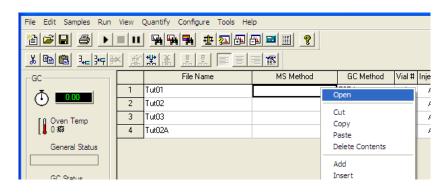
单击 OK 回到初始的方法摘要窗口(main Method Summary)。



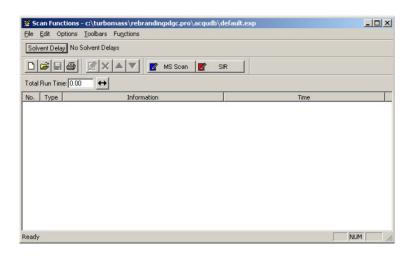
7.4.1.6 在 File 菜单下点击 Save 保存新建的色谱方法。此时文件对话窗口将会出现。如果需要的话可以输入方法的简要描述,并单击 OK。

7.4.1.7 文件保存路径及对话框出现。输入以.mth 结尾的文件名为方法命名,并单击 Save,保存该方法。

此时 GC 方法文件保存在已建立的项目(见 4.1 建立一个新的项目)下 Acqudb 文件夹中。 注意:方法的保存路径和文件名不能包含中文字符。

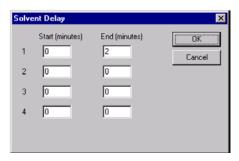


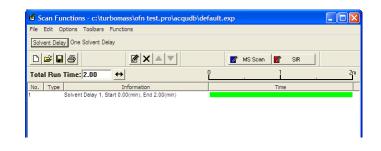
7.4.1.8 在方法摘要窗口(main Method Summary)的 File 菜单下选择 Exit,退出该页面。 至此,GC 方法编辑结束。


7.4.2 MS 方法的建立

7.4.2.1 由样品列表进入 MS 方法编辑页面

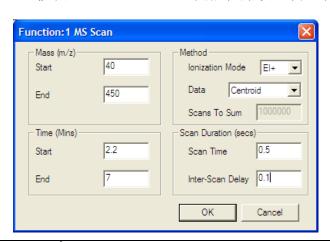
在仪器主页面的样品列表中,右键单击 MS Method 列内的方法名,在弹出的菜单中选择 Open,如上右图所示。




7.4.2.2 出现 如下 MS 方法编辑页面。

7.4.2.3 单击 Solvent Delay 按键 Solvent Delay, 溶剂延迟设置窗口就会显示如下左图。

第一行的 Start 设为 0, End 输入溶剂延迟的时间。其他各行保持为 0, 并点击 OK。则 MS 方法编辑页面出现绿色的溶剂延迟时间显示,如下右图。


如何测定溶剂延迟时间

由于溶解样品的溶剂在进入 GC 进样口时会气化膨胀,同时溶剂在色谱柱中通常不被保留,因此这些溶剂气体会在短时间内率先进入 MS。此时为了延长灯丝寿命,通常会将灯丝关闭,直至溶剂气体离开离子源,这段关闭灯丝的时间称为溶剂延迟时间。

由于溶剂气体经过离子源时,会导致离子源内气压升高,因此可以通过观察仪器调谐界面的压力表指针变化,来观察溶剂气体何时到达离子源,何时完全离开离子源。(通常溶剂气体经过离子源时,真空度会明显下降,即压力表指针会向压力高的方向产生一定偏移。)溶剂离开离子源的时间便是溶剂延迟时间,即Solvent Delay 中 End 对应的时间。

7.4.2.4 单击 MS Scan 按键 **MS Scan** ,全扫描程序设置窗口将会显示如下图。

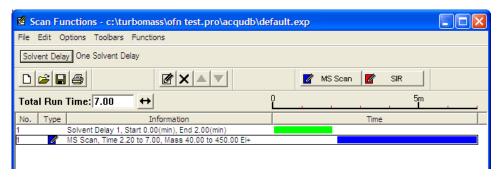
参数 描述

	Start	全扫描的质量范围		
Mass		起点	仪器完成一次由起点至终点的全扫	
IVIASS	End	全扫描的质量范围	描, 便得到一个数据点。	
	Elia	终点		
	Start	全扫描程序数据采集的开始时间。(以		可与 GC 运行时间
Time	Start	分钟记)		一致(应刨除溶剂
	End	全扫描程序结束的时间	全扫描程序结束的时间。(以分钟记)	
	Ionization	离子源的离子化方式,常用为 EI+。 数据的采集和储存方式,常用为质心采集(Centroid)。		
Method	Mode			
	Data			
	Scan Time	每次从质量数起点扫描到终点,需要的时间。(以秒记)		
Scan	Inter-Scan	在一次扫描(从质量范围起点扫描到终点)结束到下一次		
Duration		扫描开始的时间间隙(以秒记)。在这期间,数据由质谱		
	Delay	检测器发送到计算机。		

单次扫描所需时间 = Scan Time + Inter-Scan Delay = 得到一个数据点所需时间

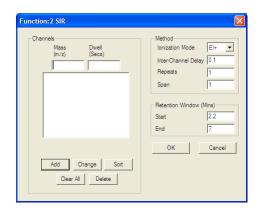
每秒进行扫描的次数= $1/(Scan\ Time + Inter-Scan\ time) =$ 每秒得到数据点的个数(采样速率)

扫描速率 = (End Mass – Start Mass) / Scan Time


因此单次扫描需时越长,每秒得到的数据点越少。Scan Time 越大,扫描速度越慢,数据点也越少。若 Scan Time 不变而扫描范围越宽,则扫描速度越快。

SQ8 MS 扫描速率最大达 12500 Da/Sec; 而扫描质量范围达 1~1200 Da; 全扫描采样速率最大达 65 次/秒。

上页全扫描图中各参数解读为: 在 GC 运行的 2.2 到 7 min 内,MS 进行全扫描数据收集模式。使用的离子源为 EI 源,数据以质心采集方式呈现,即棒状图。全扫描的质量范围为 40 至 450,每次仪器由 40 扫描到 450 所需时间为 0.5 s,两次扫描间隔时间为 0.1 s。因此完成一次扫描(40 至 450) 并把数据发送给计算机的时间为 0.6 s,MS 的全扫描速度为 (450-40)/0.5=820 (Da/s) ,每秒得到 1/(0.5+0.1) = 1.67 个数据点。若一个色谱峰宽度为 6 s,则一个色谱峰包含采样


点为 6×1.67=10 个。

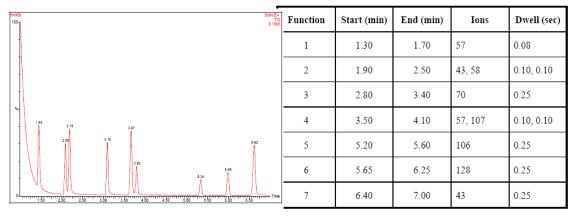
完成上述设置后点击 OK,出现如下界面。在 Type 列内含有图标 的行,即为全扫描程序行。

注意:溶剂延迟的截止时间与全扫描开始的时间可以完全相同,同时在保证目标色谱峰出峰的情况下(即目标色谱峰不是在溶剂延迟后马上出峰),可以将全扫描时间设定为溶剂延迟截止时间再加 0.2 min,保证基线的平整。

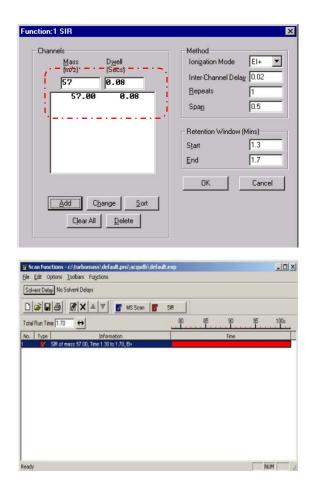
7.4.2.5 单击 SIR 按键 ☑ SIR ,选择离子扫描程序设置窗口,将会显示如下图。

建立 SIR 方法

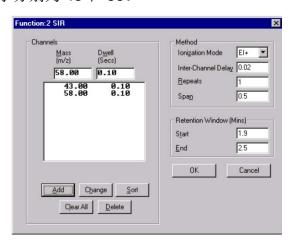
选择离子扫描(SIR 也称作选择性离子检测或者 SIM)是只检测一个或几个特征离子的扫描方式,主要是用于灵敏度的提高并且也可以用于减小需要记录数据的空间。这些特征离子的选定,来源于对全扫描数据的分析与识别,通常选择高质量数和高强度的离子。如下图所示。

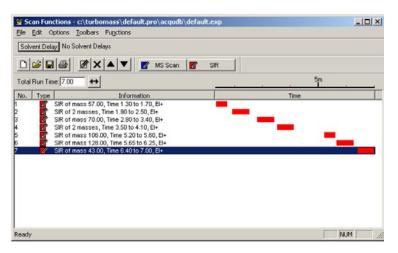


参数 描述

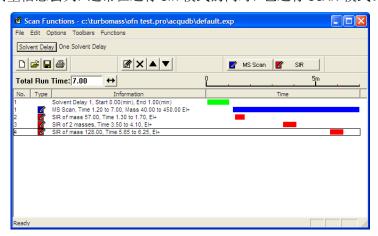

Mass		特征离子的质荷比(如 149)		
		某一特征离子被监测的时间。这个值通常这样设定: 使在		
Dwell*		GC 色谱峰中所有目标离子的 Dwell 时间取总和后,可以		
Dweii		得到大于等于 9 次扫描 (定性实验) , 或 11 次扫描 (定量		
		实验)数据。		
Retention	on Start 选择离子扫描程序进行数据采集的开始时间。(以分钟证			
Window* End 选择离子扫描程序结束的时间。(以允		选择离子扫描程序结束的时间。(以分钟记)		
	Ionization	南 7 据 的 南 7 儿 子 子 一		
	Mode	离子源的离子化方式,常用为 EI+。		
Method	Inter-Scan	在一次选择离子扫描结束到下一次扫描开始的时间间隙		
	Delay	(以秒记)。		
	Repeats	该选择离子扫描功能执行的次数。		
	Span	扫描范围(如 0.5,则质谱仪会从 m/z =148.75 扫描到 149.25)		

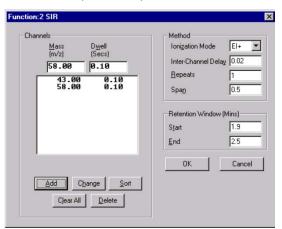
现将通过一个实例,来显示如何完成选择离子扫描设置。


首先经过对样品的全扫描,得到如下左谱图;对其进行数据分析,确定了如下右表格中7个不同扫描时间区段内的特征离子:


然后如下左图填写 Function 1 行中选择离子扫描设置窗口,单击 Add,把 57 这个特征离子信息加入窗口内的虚线框区。单击 OK,得到如下右图页面。

然后填写 Function 2 行中选择离子扫描设置窗口,如下图。在该时间段内,同时检测 2 个特征离子分别为 43 和 58。

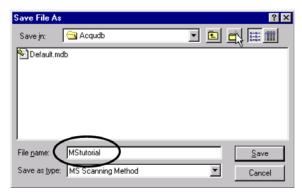

按照上述方式,把7个时间区段的选择离子窗口全部填写完成,则如下图所示。


至此,上述实例讲解结束。

注意: 使用 SIR 模式时,同样需要有溶剂延迟设置,见 5.2.2。

注意: 为防止质量信息丢失,通常在运行 SIR 模式的同时,也运行 SCAN 模式。如下图所示:

*Dwell time: 使在 GC 色谱峰中所有目标离子的 Dwell 时间取总和后,可以得到大于等于 9次扫描 (定性实验),或 11次扫描 (定量实验)数据。以下图为例解释



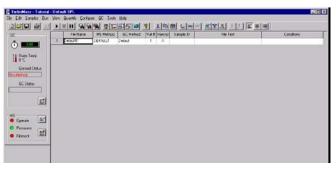
MS 单独检测 m/z 为 43 的离子所用时间为 0.1 s,然后仪器切换至单独检测 58 的离子,该段切换时间为 Inter-Channel Delay 0.02 s。因此仪器在 m/z=43 离子上总共花费时间为 0.12 s。同理花费在 m/z=58 离子上的时间为 0.12 s。在同一时间段(1.9-2.5 min)同时检测两个离子总共需要 0.24 s。若在该时间段内的色谱峰宽为 6 s,则仪器在该色谱峰经过时,可以进行的扫描次数为 6÷0.24=25 次,即该色谱峰上可得到 25 个数据点,大于 9 次扫描。

*Retention Window: 保留时间窗口应大于窗口内色谱峰的宽度,以免色谱峰漂移时,数据收集不完整。若几个色谱峰距离很近,甚至分离不完全,则建议把上述几个色谱峰特征离子放在同一个时间窗口内,同时检测。

至此, SIR 方法编辑结束。

7.4.2.6 单击 MS 方法编辑页面的 快捷键,保存 MS 方法。方法名称为 MStutorial。

此时 MS 方法文件保存在已建立的项目(见 4.1 建立一个新的项目)下 Acqudb 文件夹中。


注意:方法的保存路径和文件名不能包含中文字符。

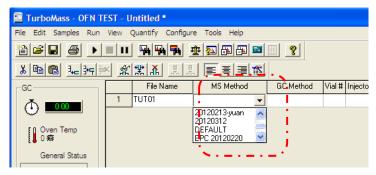
7.4.2.7 在 File 菜单下选择 Exit, 退出 MS 方法编辑页面。

至此, MS 方法编辑结束。

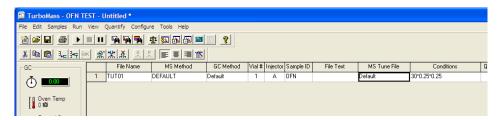
7.4.3 样品列表的运用

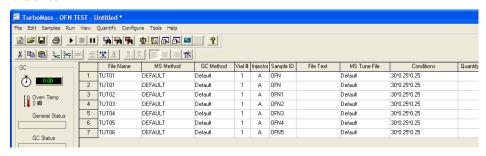
样品列表在前文简单介绍过(见2.3),默认的样品列表如下图所示:

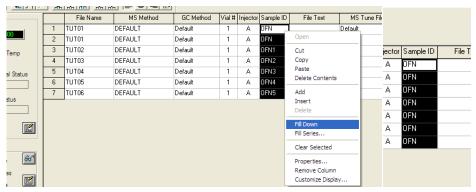
7.4.3.1 使用样品表进行数据收集

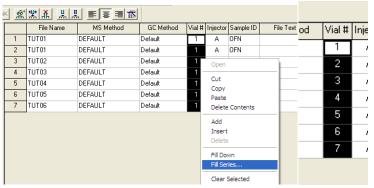

当需要运行样品获取数据时,样品列表中有些栏目是必填栏目,如文件名称,质谱方法,气相方法。

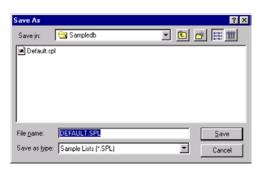
7.4.3.2 单击 File Name 区域,并输入一个与其他不同的文件名。(系统对文件 名中的大小写字母不会进行区分)这个文件名(Tutorial01.raw)将成为该分析 目录下的一个子目录名。并在该子目录下保存这个样品的实验数据。

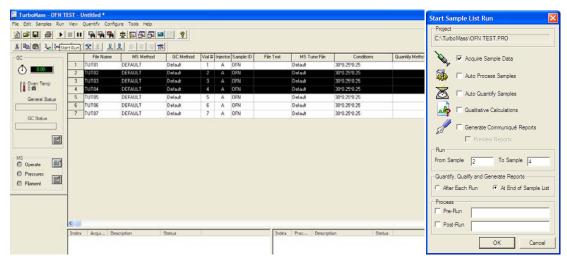

如在本例中,该子目录为 C:\TurboMass\TutorialQuant.pro\Data\TUT01.RAW。子目录下有 8 个文件,均为与样品实验数据相关的文件。


7.4.3.3 双击 MS Method 区域,在出现的选单中选择您所要选用的质谱方法。


- 7.4.3.4 双击 GC Method 区域,在出现的选单中选择您所要选用的色谱方法。
- 7.4.3.5 如果您的系统有自动进样器,单击 Vial # 区域输入您的样品小瓶在自动进样器上所处的位置。如果您的系统没有自动进样器,可以不必填写该栏目。
- 7.4.3.6 如果您的系统有自动进样器,在 injector 区域写入您需要使用的进样器, 一般一台气相色谱仪有两个进样器 A 和 B。处在较外位置的是进样器 A,较里面的位置是进样器 B。
- 7.4.3.7 如需把调谐方法引入样品列表,则可按照上文 2.3 部分把 MS Tune File 引入样品列表并双击 MS Tune File 区域,在出现的选单中选择所需调谐方法。
- 7.4.3.**7** 样品 ID.(Sample ID.)与文件描述(File Text)为选填内容。

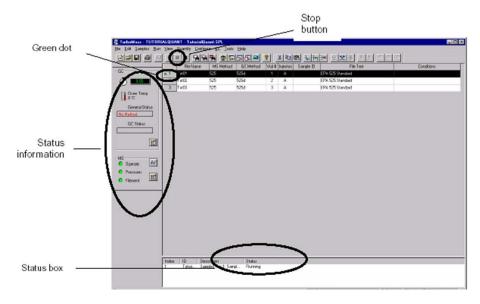

7.4.3.8 上述内容完成后,可点击仪器主页中的 ³← 来添加样品列表行,或点击 ³← 来插入列表行。


7.4.3.9 如需把某列内容改为完全相同的内容,则可全部选中该列(黑色部分),然后点击右键出现如下左所示内容,选择 Fill Down。呈现结果如下右图


如需把某列内容改为按顺序填写的内容,则可全部选中该列(黑色部分),然后 点击右键出现如下左所示内容,选择 Fill Series。呈现结果如下右图

7.4.3.10 在 File 菜单下选择 **Save As** 选项,并输入样品列表的名称。该文件的扩展名为 spl。

7.4.3.11 当表内的样品需要运行获取数据时,可选中需要运行的内容 (黑色部分) ,如下左图,点击 , 在出现的 Start Sample List Run 对话框(右下)勾选 Acquire Sample Data,并点击 OK 使样品运行。

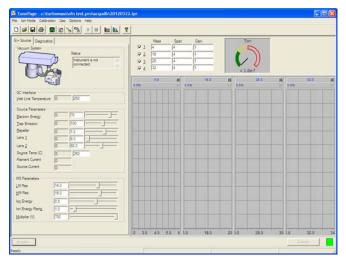

当样品分析开始后,请注意样品列表窗口的下述动作:

Stop 按钮变红。

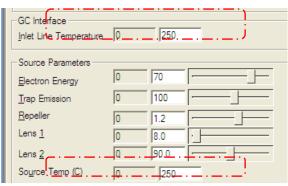
正在运行的样品项目的左端有一个绿色的亮点。

在 GC 状态框中显示即时的系统状态信息。

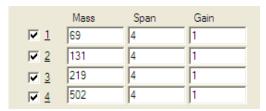
当 General Status 和 GC Status 均显示 Ready 字样时,您即可以进行进样操作。


7.5 调谐方法的建立

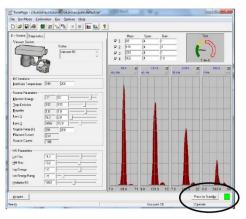
调谐方法的建立是使用特定标准品来修改仪器参数设置,直到获得优化的强度、分辨率和峰形的过程。而调谐方法即为 MS 工作过程中离子通路上各部件电压值的方法。


调谐过程中默认的标准品为全氟三丁胺(Heptacosa,也称作 FC-43,PTA,PFTBA 和 heptacosatributylamine)。

通常,仪器仅需按照说明中7.3一般校准的步骤操作即可,如果间隔较长时间或灵敏度下降,则需要进行调谐。

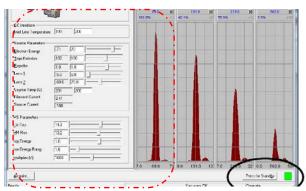

7.5.1 在仪器主页面状态栏单击 666 图标显示调谐窗口如下,保证此时真空度在绿色区域。

7.5.2 在调谐页面左侧写入传输线温度 (Inlet Line Temperature) 和离子源温度 (Source Temp)



7.5.3 在页面右上方调谐峰质量数窗口写入如下四个质量数

- 7.5.4 在传输线温度和离子源温度达到预定值后,单击 [15] 打开参比气。
- 7.5.5 单击窗口右下角的 Press for Operate 按键,如下图所示,此时在调谐页面可以看到参比气的质谱峰显示,见下页图。


7.5.6 单击 键开始 Custom Ultra 调谐。调谐程序的首页就会显示

- 7.5.7 选择 "Start"开始 Ultra 调谐。状态对话框会显示当前正进行的调谐步骤。 Custom Ultra 调谐状态条实时显示调谐的进度。
- 7.5.8 调谐结束后,选择"Close",关闭对话框

7.5.9 此时在调谐页面右侧可以看到调谐后标准气体质谱峰,左侧即为对应调谐参数。若想对目前的质谱峰高度,峰宽等有任何修改,可在左侧参数栏内修改数字大小,来改变质谱峰状态,此即为手动调谐。

GC Interface: 气相色谱传输线

Inlet Line Temperature: 传输线温度 Source Parameters: 离子源参数

Electron Energy: 电子能量(常为70 ev)

Trap Emission: 收集极电流(常为100)

Repeller: 推斥极电压

Lens 1: 透镜 1 电压 Lens 2: 透镜 2 电压

Source Temp: 离子源温度

Filament Current: 灯丝电流

Source Current: 源电流 MS Parameters: 质谱参数

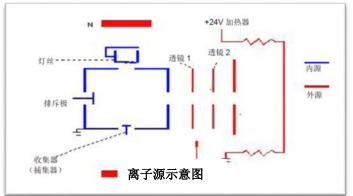

LM Res: 低质量端分辨率 HM Res: 高质量端分辨率

Ion Energy: 离子能量

Ion Energy Ramp: 离子能量倾斜

Multiplier: 倍增管电压

7.5.10 在菜单 File 下选择 "Save", 保存该调谐文件。


此时调谐方法文件保存在已建立的项目(见 4.1 建立一个新的项目)下 Acqudb 文件夹中。

注意:方法的保存路径和文件名不能包含中文字符。

7.5.11 单击 关闭参比气,观察调谐页面右侧的四个参比峰(m/z=69,131,219,502)是否强度逐渐减弱,最后消失。单击窗口右下角的 Press for Standby 按键使仪器回到待机状态。

至此,调谐方法编辑结束。

注:调谐方法与 GC 方法,MS 方法平行,针对不同样品可使用不同的 GC、MS和调谐方法。

